2.1 Population Models

Separable Equations and Partial Fraction Methods

Example 1 (review of Section 1.4) Separate variables and use partial fractions to solve the initial value

problems. Sketch the graphs of several solutions of the given differential equation, and highlight the particular
solution.
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Exercise 2 (See the solution in the filled-in notes). Separate variables and use partial fractions to

solve the initial value problems.
Sketch the graphs of several solutions of the given differential equation, and highlight the particular

solution.
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Review: Exponential Growth Model

e An Example:

o | mixed a cup of suger, water, ginger bugs and ginger into a jar.

o One day later (a video)

e FEarlier we used the exponential differential equation

dP
— =LkP
dt
with solution
P(t) = Pye™

to model natural population growth.

® This assumed that the birth and death rates were constant.

e Now we consider a more general population model that allows for nonconstant birth and death rates.



Variable Birth and Death Rates

We define the birth rate function 3(¢) as the number of births per unit of population per unit of time at
time ¢.

Similary, the death rate function 6(¢) is the number of deaths per unit of population per unit of time at
time ¢.

Over the time interval [t, t + At] there are then roughl B(t) - P(t) - At births and (t) - P(t) - At
deaths

Thus the change in population over this time interval is

AP = { births } — { deaths } ~ S(¢t) - P(t) - At — §(¢) - P(¢) - At (5)
Dividing by At gives

AP

A~ 1B(E) ()] P(t) (6)

Taking the limit as At — 0 gives the general population equation

dP
— = (B() —(¥))P (7)

In the event that 8 and § are constant, this equation reduces to the natural growth equation with

k=pB-4.
But it also includes the possibility that 4 and § vary with t.



The Logistic Equation

Decreasing Birth Rate

We often observe that the birth rate of a population decreases as the population itself grows.

e One way to model this is to assume that the birth rate Sis a linear decreasing function of the population
size P, then

B=po—B1P (8)
where 3y and (3; are positive constants.

e |f the death rate § = §y remains constant, then our general population equation becomes

= (B8P = (B~ PP~ 5)P ©
e We can rewrite this as /"“ M
] l
dP o

where a = By — &g and b = ;.
e |[f the coefficients @ and b are both positive, then this equation is called the logistic equation.

e |tis useful to rewrite the logistic equation in the form

dP
— =kP(M - P) (11)

where k = band M = a/b are constants.



Limiting Populations and Carrying Capacity
® InSection 1.4. The exponential differential equation has a general solution P(t) = Pye**

e |t follows that
lim P(t) = +oo (12)

t—+o00

e This means that the population grows without bound in a naturally growing population model.
e Question: If a population satisfies the logistic equation, what can we say about the population in the long-
term?
Example 3. Show that the solution of the logistic initial value problem

‘fi_f = kP(M — P), P(0)=P, (13)
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Make it clear how your derivation depends on whether 0 < Py < M or Py > M.
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Example 4

e Consider a population P(t) satisfying the logistic equation

P
Cil—t — aP — bP? (15)

where B = aP is the time rate at which births occur and D = bP? is the rate at which deaths occur.

e |If the initial population is P(0) = Po,aand By births per month and D deaths per month occurring at

timet =0 <V
e Show that the limiting population is M = By Py/Dy.
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Example 5

e Consider a rabbit population P(t) satisfying the logistic equation as in Example 4 .

e |[f the initial population is 120 rabbits and there are 8 births per month and 6 deaths per month occurring
attimet =20

e How many months does it take for P(t) to reach 95% of the limiting population M?
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